
Top Partners at Future Hadron Colliders

Aram Avetisyan

Boston University

Top Partners

- Common feature of several different theories
 - Decay to top + X
 - Couple to 3rd generation quarks
 - Solve hierarchy problem

- Can be found in:
 - Composite Higgs
 - Extra dimensions
 - Little Higgs
 - SUSY (stops)

Models used for studies in this talk

The Snowmass "Detector"

- Generate events with MadGraph
- Hadronization with Pythia
- Simulation with Delphes
 - Configuration based on ATLAS and CMS detectors
- Generated common H_T-binned backgrounds
- See
 - arXiv:1308.0843
 - arXiv:1308.1636
 - arXiv:1309.1057

Vector-Like Quarks

- See JHEP 04:004, 2013 for a detailed theoretical description
- Can appear in a singlet or in a fourplet:

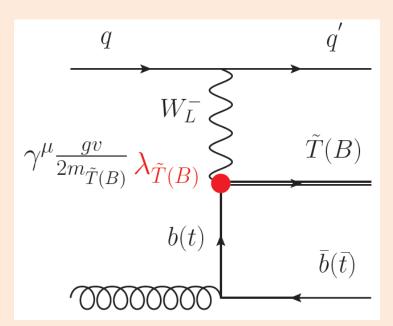
$$\mathcal{Q} = \begin{bmatrix} T & T_{5/3} \\ B & T_{2/3} \end{bmatrix} = (\mathbf{2}, \mathbf{2})_{2/3} , \ \tilde{T} = (\mathbf{1}, \mathbf{1})_{2/3}$$

- $T_{5/3}$ and $T_{2/3}$ are the lightest
- T_{5/3} decays exclusively to tW
- T_{2/3}, T and T[~] and can decay to bW, tZ and tH
 - Some branching ratios may be 0 depending on the model

The Vector-Like T

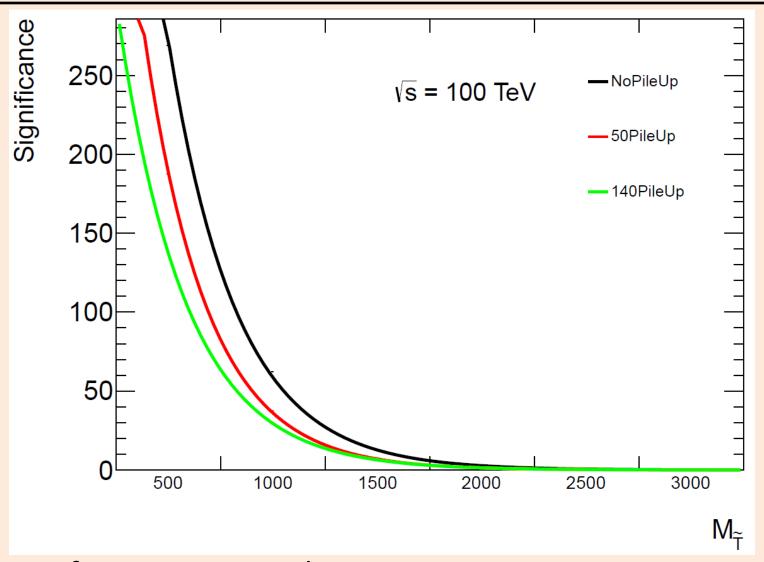
- Can be produced singly or via pair-production
- Single production: more model dependent, more backgrounds
 - But much higher cross-section at large masses

Single Production of T


- arXiv:1309.1888 (T. Andeen, C. Bernard, K. Black, T. Childers, L. Dell'Asta and N. Vignaroli)
- Studied T \rightarrow tZ and T \rightarrow tH
 - With single production, bW has high backgrounds
- Considered several pileup scenarios
 - Integrated luminosity = 1000 fb⁻¹
 - 0, 50 and 140 pileup
- Same selection for 14 TeV, 33 TeV and 100 TeV
 - May be further optimized with separate selections

Single T \rightarrow tZ Selection

- Look for tri-lepton decays
 - Exactly 3 leptons (e or μ only) with $p_T > 20$ GeV, $|\eta| < 2.5$
 - At least 2 b-tagged Anti k_T r = 0.5 jets with p_T > 30 GeV, $|\eta|$ < 5
 - At least 1 light jet
 - Missing $E_T > 30 \text{ GeV}$
- Reconstruct Z-boson from leptons
 - Invariant mass must be within 10 GeV of M_Z
- Reconstruct W from remaining lepton and missing E_T
- Reconstruct top from W and b
 - Must have mass within 160 GeV < M < 190 GeV


Single T → tH Selection

- Assume H → bb, leptonic top decay
 - One lepton (e or μ only)
 - $p_T > 20 \text{ GeV}$, $|\eta| < 2.5$
 - Missing $E_T > 30 \text{ GeV}$
 - 3 b-tagged jets with $p_T > 25$ GeV
 - At least 2 forward jets ($|\eta| > 3.0$)
 - From hard scattering
 - $H_{T} > 750 \text{ GeV}$

- Reconstruct W from lepton and missing E_T
- Reconstruct top from b and W
- Cambridge-Aachen jet with 100 GeV < M < 150 GeV (Higgs)

Single T Results

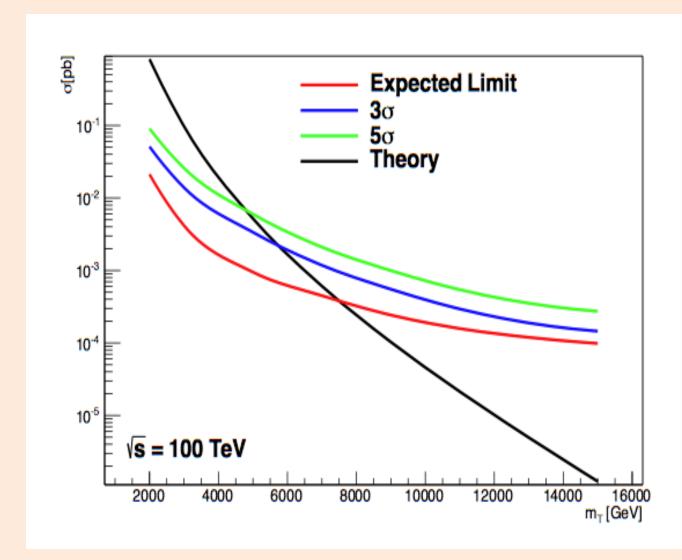
5σ significance at around 1.7 TeV

Pair Production of T

Study by S. Ahuja

- Lepton+jets channel
 - In all decay modes
 - TT→ tHtH, tZtZ, WbWb, tHtZ, tHWb and tZWb
- Sensitivity studies for VLHC
 - 100 TeV
 - $\int L = 1000 \text{ fb}^{-1}$
 - Pileup = 40

Pair T Selection

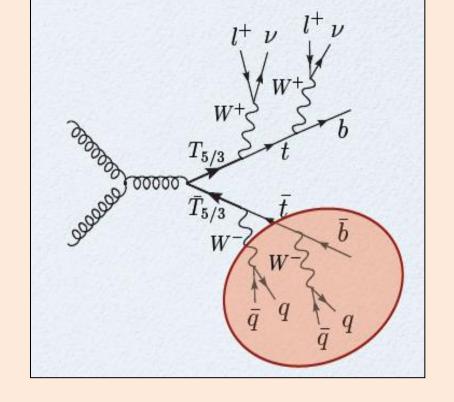

Preselection:

- Exactly one charged lepton (e or μ) with $p_T > 30 \text{ GeV}$
- Missing $E_T > 150$ GeV,
- At least three jets with $p_T > 2000$, 1300, 700 GeV and $|\eta| < 2.5$
- Leading b-jet $p_T > 1500$ GeV.
- W-tagged jets $p_T > 200 \text{ GeV}$
- Event Categories: 8 categories based on jet multiplicities
 - Category I3+nb: At least one W-jet + 0....n b-tagged jets
 - n = 0...3, where n = 3 includes n > 3
 - Category I4+nb: ≥ 4 jets with $p_T > 2000$, 1300, 700 & 150 GeV
 - No requirement on W-jets

Pair T Results

 95% exclusion limit: ~7.3 TeV

- 3σ discovery:~5.7 TeV
- 5 σ discovery:
 ~4.8 TeV


The $T_{5/3}$

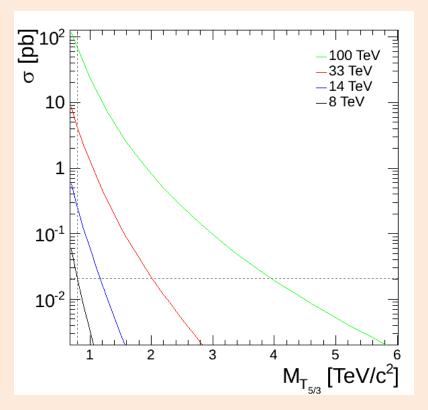
• arXiv:1309.2234 (A. Avetisyan, T. Bose)

- Decays to tW
 - Leads to same-sign dileptons:

$$l^{\pm}l^{\pm} + 2b + 2W$$

- Currently pair-production only
- Considered 14 and 33 TeV

Hadronic T_{5/3} can be reconstructed

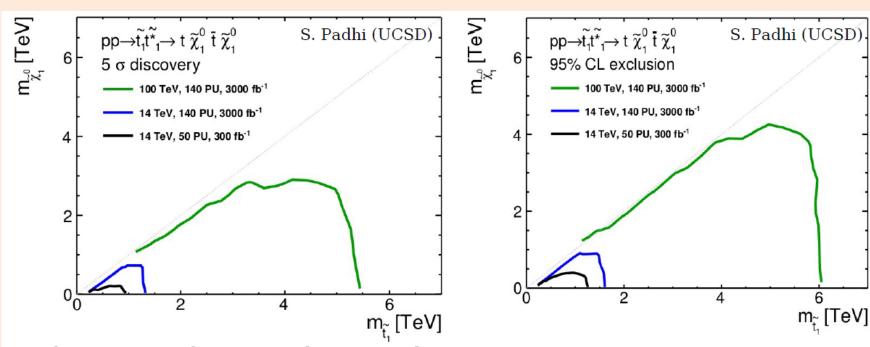

T_{5/3} Selection


Parameter	14 TeV Min [GeV]	33 TeV Min [GeV]
Leading lepton p_T	80	150
Second lepton p_T	30	50
Leading jet p_T	150	150
Second jet p_T	50	50
$\not\!\!E_T$	100	200
H_T	1500	2200
S_T	2000	3000

- In addition, require objects corresponding to at least 7 decay products of the $T_{5/3}$ pair
 - Same-sign leptons account for 2
 - The rest are other leptons or jets
 - Top-tagged jets count as 3, W-tagged jets count as 2

T_{5/3} Results

Can extrapolate to 100 TeV based on cross-sections


Extrapolate from 8 TeV analysis (PRL 112 (2014) 171801): 95% CL of about 4 TeV

Extrapolate from 33 TeV study: 95% CL of about 5.7 TeV

The Stop

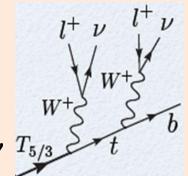
- arXiv:1309.1514 (D. Stolarski)
- Model with $t^{\sim} \rightarrow t\chi_0$ where the latter is the LSP
- Simulated with MadGraph + efficiencies from ATLAS and CMS
- Selection:
 - All hadronic ttbar decay
 - At least 1 b-tag
 - Tops must be top-tagged jets with $p_T > 500 \text{ GeV}$
 - Missing $E_T > 600 \text{ GeV}$

Stop Results

Preliminary results using 1-lepton mode.

→ With 140 PU, stop mass up to 6 TeV can be probed

Similarly in all hadronic mode (only with 1 ab⁻¹) mass up to 5.7 TeV can be studied


Collider	Energy	Luminosity	Cross Section	Mass
LHC8	8 TeV	20.5 fb^{-1}	10 fb	$650~{ m GeV}$
LHC	14 TeV	300 fb^{-1}	3.5 fb	1.0 GeV
HL LHC	14 TeV	$3 { m ab}^{-1}$	1.1 fb	1.2 TeV
HE LHC	33 TeV	3 ab^{-1}	91 ab	3.0 TeV
VLHC	100 TeV	$1 {\rm \ ab^{-1}}$	200 ab	5.7 TeV

arXiv:1309.1514

Slide from S. Padhi

Considerations for 100 TeV

- Trigger
 - Top partner studies can generally afford to raise thresholds
 - May need to switch from dilepton triggers to single lepton
 - Leptons from top quark will merge with b-quarks
- Jet Substructure
 - 8 TeV algorithms based on masses after "grooming"
 - Less successful for very high p_T jets
 - Sub-jets too close
 - Target mass window small compared to energy scale
 - New algorithms (e.g. n-Subjettiness) to be used in LHC Run II
 - Will need even better ones at 100 TeV

